URANIUM MINING AND LUNG CANCER IN NAVAJO MEN

JONATHAN M. SAMET, M.D., M.S., DANIEL M. KUTVIRT, B.A., RICHARD J. WAXWEILER, PH.D.,
AND CHARLES R. KEY, M.D., PH.D.

Abstract We performed a population-based case-control study to examine the association between uranium mining and lung cancer in Navajo men, a predominantly nonsmoking population. The 32 cases included all those occurring among Navajo men between 1969 and 1982, as ascertained by the New Mexico Tumor Registry. For each case in a Navajo man, two controls with nonrespiratory cancer were selected. Of the 32 Navajo patients, 72 per cent had been employed as uranium miners, whereas no controls had documented experience in this industry. The lower 95 per cent confidence limit for the relative risk of lung cancer associated with uranium mining was 14.4. Information on cigarette smoking was available for 21 of the 23 affected uranium miners; eight were non-smokers and median consumption by the remainder was one to three cigarettes daily. These results demonstrate that in a rural non-smoking population most of the lung cancer may be attributable to one hazardous occupation. (N Engl J Med 1984; 310:1481-4.)

URANIUM miners work in an atmosphere that is contaminated by radon daughters, the short-lived decay products of radon gas. Investigations of uranium miners and other underground miners have established a causal association between inhalation of radon daughters and the occurrence of lung cancer.1-3 However, only limited data have been available from non-smoking miners.

In the United States, the uranium industry developed during the late 1940s in the Colorado Plateau region of Colorado, Utah, Arizona, and New Mexico, including portions of the Navajo Indian Reservation near Shiprock, New Mexico (Fig. 1).4,5 Uranium production from this portion of the Navajo reservation reached a peak during the 1950s and declined through the mid-1960s. Navajo men who were employed as uranium miners worked primarily in this area, but some mined off the reservation as well. Little information has been published concerning working conditions in the mines on the Navajo reservation. Limited surveys by the Public Health Service and other agencies have documented exposures to radon gas and silica dust.6,7 Anecdotal accounts describe dusty mines with little effective ventilation.8-10

Excess mortality from lung cancer has been demonstrated in Navajo men who mined uranium in this region. A follow-up study of 780 American Indian miners, primarily Navajos, showed 11 deaths from respiratory cancer through 1974, with only 2.6 expected.11 Among 17 Navajo men with lung cancer who were admitted to the Shiprock Hospital between 1965 and 1979, 16 had mined uranium.12

Since 1969, the New Mexico Tumor Registry, a member of the National Cancer Institute’s Surveillance, Epidemiology, and End Results Program, has ascertained all incident cancer cases in the Navajo population of New Mexico, Arizona, and Utah.13 We have used this resource to describe further the importance of uranium mining as a cause of lung cancer in Navajo men, a largely non-smoking group. To accomplish this goal, we have performed a population-based case-control study of all 32 cases of lung cancer diagnosed among Navajo men between 1969 and 1981.

METHODS

For this investigation, all cases of primary lung cancer (n = 33) (International Classification of Diseases for Oncology, code 162) in Navajo males included in the New Mexico Tumor Registry file on August 31, 1982, were selected. One subject with a histologically confirmed carcinoid tumor was excluded. Of the 32 remaining cases, 28 were histologically confirmed; two were diagnosed by x-ray film, and two were identified by review of death certificates. Twelve of these cases were included in the series of Gottlieb and Husen,14 six in a report by Archer et al.,15 and six in both.

For each case, two deceased Navajo male controls with cancer other than lung cancer were selected from the Registry files. Decedent controls were used because only two of the Navajo subjects with lung cancer remained alive at the time of this investigation and death certificates were one source for occupational histories. The controls were matched to the cases for age (± five years) and diagnosis date (± five years). The primary tumor sites for the 64 controls were digestive (n = 35), male genital (n = 5), kidney (n = 4), brain...
duration of exposure (measured as 170-hour working months) and the working-level values in the mines.

Statistical Analysis

The data were analyzed with standard techniques for a matched case-control study. The statistical significance of the association between lung cancer and uranium mining was tested with an exact test developed by Gart. A lower 95 per cent one-sided confidence level for the relative risk \(rr \) was calculated from the binomial distribution by setting \(\frac{rr + 2}{rr + 2n} = 0.05 \), where \(n \) equals the number of exposure-discrepant triplets.\(^{16}\)

For a further description of the effects of uranium mining in Navajo men, incidence rates were calculated with and without the cases in uranium miners. Mid-period (1975) denominators derived from Indian Health Service population estimates\(^{11}\) were used. Rates were adjusted by the direct method to the age of the 1970 U.S. population for comparison.

Results

Of the 32 Navajo men with lung cancer in the period 1969-1981, 23 had been employed as uranium miners. This occupational history was documented for 20 by the NIOSH rosters and for the remaining 3 by New Mexico Tumor Registry abstracts. For 16 of the 20 included on the NIOSH lists, death certificates or New Mexico Tumor Registry abstracts were confirmatory.

A history of uranium mining could not be documented for any of the controls. One had worked in a lead, zinc, and silver mine. The association between uranium mining and lung cancer was statistically significant (\(P = 1.1 \times 10^{-11} \)). The estimate of relative risk was infinite because no controls were exposed. However, with use of the binomial distribution, the lower 95 per cent confidence limit for the relative risk was 14.4.

The age distribution of the affected Navajo uranium miners differed markedly from that of the affected Navajos who were not uranium miners and from that of men with lung cancer in the white U.S. population. The median age of the affected miners was 44 years, whereas that of the affected non-miners was 63 years — similar to that of affected men in the white U.S. population. The residences of the cases with a history of uranium mining were clustered in the northeast portion of the reservation around the Shiprock, New Mexico, and Cove, Arizona, area where the mines had been located (Fig. 1). In 1975, the Indian Health Service unit that included these communities comprised 24 per cent of the total Navajo population. In contrast, the residences of the nine affected non-miners were scattered across Arizona and New Mexico, as were the residences of the controls. During the 12-year study period, the number of lung cancer cases among uranium miners did not decline; 11 were diagnosed during 1969-1972, and 9 during 1978-1981. The median age for the earlier group of cases was 42 years, as compared with 54 years for the more recent ones.

For the 23 cases with uranium-mining experience, the median duration of employment in underground mines was 13 years. Six were employed there for less than 10 years. The median duration from the start of employment in uranium mining until diagnosis (in-
duction-latency period) was 23.5 years (range, 12 to 38), excluding one case for whom this period could not be determined.

Lifetime working-level months, calculated from job histories, were known for 14 cases and ranged from 30 to 2698, with a median of 1207. However, the two lowest values, 30 and 103 WLM, appear from our review of the records to be based on incomplete work histories. The third lowest value was 830.

Information concerning cigarette smoking was available for 21 of the 23 affected uranium miners (Table 1). Although the majority had smoked cigarettes, the amounts reported were low. Only five had smoked as much as four to eight cigarettes daily. No data on cigarette smoking were available for controls because the major source of these data was the Public Health Service records.

Discussion

American Indians have substantially lower rates of lung cancer than white and other nonwhite populations of the United States.18-20 This pattern has been confirmed in the Navajo and other southwestern tribes by autopsy, mortality, and incidence data.21-24 A low prevalence of cigarette smoking by American Indians, as suggested by the limited available data,22,23 is the most obvious explanation for these differences. Of the American Indian miners in the Colorado Plateau investigation, 62 per cent had never smoked, and the median consumption by smokers was only four cigarettes per day.21 Of a sample of adult Navajos admitted to the Phoenix Public Health Service Indian Hospital from 1961 through 1965, only 4.3 per cent smoked more than one pack of cigarettes daily.26 In a 1977 survey of Navajos, only 13 per cent smoked and only 6 per cent of the smokers consumed at least one pack daily.27

The present investigation thus offers an assessment of the role of a single occupational risk factor, uranium mining, in a population at low risk for lung cancer. Case ascertainment through a population-based tumor registry for the Navajo tribe facilitated examination of the effects of this exposure in the entire tribe in this study, unlike previous studies.11,12

The association between uranium mining and lung cancer among the Navajos was strong, with a lower 95 per cent confidence limit of 14.4 for the relative risk. In fact, 72 per cent of the cases (23 of 32) are attributable to this industry. For all male Navajos, the average annual age-adjusted incidence rate of lung cancer for the period 1969-1981 was 16.6 per 100,000. Exclusion of the affected uranium miners lowered the rate to 5.2 per 100,000. This finding demonstrates that in a population at low risk for a specific cancer, exposure to a single risk factor may have readily detectable consequences and cause the majority of cases.

Bias cannot satisfactorily explain the results, although selection and information bias are possible. With regard to selection bias, the diagnosis of lung cancer may be more vigorously pursued in younger men with a history of uranium mining. However, in the younger age groups in which the proportion of cases attributable to uranium mining is highest, contact with medical care and intensity of evaluation were probably comparable for miners and non-miners. With regard to information bias, death certificates and the New Mexico Tumor Registry abstracts provided more complete occupational information for the cases. The Public Health Service censuses, however, were the major source used for identifying uranium miners. These censuses were prospectively collected and uniformly applied to cases and controls. Because of the size of the Public Health Service study group (n = 780), we expected to find that several controls had worked as uranium miners. The failure to identify any exposed controls may reflect better occupational information for cases or may have resulted from chance. Nevertheless, even if several controls had been uranium miners, the relative risk associated with this exposure would have remained high.

Differing smoking habits of cases and controls also cannot explain the effect of uranium mining. Because smoking histories were unavailable for controls, we could not directly assess the relative risk associated with cigarette smoking. In other populations, the relative risk for smokers of less than one pack per day ranges from approximately 2 to 10.28 With a formula derived from a prospective study of British doctors,29 we have calculated that the relative risk of lung cancer associated with smoking three cigarettes daily, the average consumption of affected Navajos who smoked, was only 2.3.

This investigation provides confirmation that uranium mining, without cigarette smoking, increases the risk of lung cancer in human beings. In animal models, inhalation of radon daughters alone causes respiratory neoplasms.30,31 Supporting epidemiologic evidence has been available from few populations, including Colorado Plateau miners1,11,12 and Swedish metal miners.22,33 Smoking was probably not a prevalent risk factor among the early Schneeberg and Joachimsthal miners either, but documentation of their smoking habits is unavailable.1,3

Further follow-up will be needed for a complete characterization of the consequences of uranium mining in Navajos. The affected Navajos in this study were primarily younger men who began mining in the early 1950s. Exposure levels have declined since that
time, and a federal standard of 4 WLM annually was implemented in 1971. More recent miners should have lower risks. However, the number of lung-cancer cases in Navajo uranium miners did not decline from 1969 through 1981, and more cases must be anticipated as these early miners age.

We are indebted to Clorinda Battaglia, of the National Institute for Occupational Safety and Health, for research support, and to Dr. John Gart, of the National Cancer Institute, for advice concerning calculation of the P values and confidence limits.

REFERENCES