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EVALUATION OF THE INDIRECT EFFECTS
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When a sufficiently high proportion of a population is immunized with a vaccine,
reduction in secondary transmission of disease can confer significant protection to
unimmunized population members. We propose a straightforward method to estimate
the degree of this indirect effect of vaccination in the context of a community-
randomized vaccine trial. A conditional logistic regression model that accounts for
within-randomization unit correlation over time is described, which models risk of
disease as a function of community-level covariates. The approach is applied to an
example data set from a pneumococcal conjugate vaccine study, with study arm and
immunization levels forming the covariates of interest for the investigation of indirect
effects.
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INTRODUCTION

Vaccines protect individuals against many diseases by reducing individual
susceptibility in the face of an exposure to pathogens. Bolstering a person’s immune
system, besides reducing susceptibility, can also have the effect of reducing the
probability of transmission of the pathogen to another person. The efficacies of
vaccines have been most commonly evaluated in individually randomized trials of
participants who form a very small part of the population in which they mix on a
daily basis. In these studies, any effect the vaccine may have in preventing secondary
transmission from a case to a susceptible person, or through reduction in carriage of
the pathogen, is minimal with respect to the overall community-level transmission
dynamics. In a large population-based, yet individually randomized trial, up to
half the population might receive the vaccine under study. This may lead to an
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appreciable lowering of secondary transmissions in the population, but the effect is
not easily measured, as it affects both the immunized and the unimmunized in the
same population.

With allocation of vaccine at the community level, i.e., with participating
individuals in defined communities all receiving the vaccine and participating
individuals in other communities all receiving placebo or control vaccine, the effect
of reducing secondary transmission can be estimated. Using the nomenclature of
Halloran et al. (1997), the total effect is the degree to which disease incidence is
lowered in the study participants who received vaccine as compared to those who
received, say, a placebo preparation. The total effect is comprised of the direct
effect of protection of the individual against a direct challenge, and the indirect
effect of being protected from the challenge in the first place, through reduction of
transmission in the community receiving vaccine.

Different approaches have been used to estimate the indirect effects of a
vaccine. For example, Ramsay et al. (2003) used surveillance data collected over a
long period of time for all of England in before-after types of analyses that depend
on assumptions of minimal secular trends. Haber et al. (1991) and Longini et al.
(1998) developed transmission models, with varying levels of assumptions, that can
be used to estimate indirect effects.

In this communication, we take a “black box” approach to determining the
additional degree, beyond the direct effect, of protection conferred on people living
in communities where a pneumococcal vaccine was administered. Longini et al.
(1998) has proposed study designs in which the vaccine coverage levels in different
communities are varied by the investigator. We use the variability that occurred
during a community-randomized pneumococcal vaccine study both in time and in
space, as communities geared up their recruitment efforts at varying paces, and
directly estimate the indirect effects via regression models that have vaccine coverage
level as the primary covariate of interest.

BACKGROUND

The vaccine efficacy study had 38 geographically defined randomization units,
or communities, which had been formed by combining slightly larger administrative
units so as to minimize the degree of social mixing, and hence contamination,
between randomization units. Half the units were randomized to the study vaccine, a
seven-valent conjugate pneumococcal vaccine (PnCRM7 vaccine), and the other half
to an active control, a conjugate meningococcal group C vaccine (MnCC vaccine)
that could have no effect on the pneumococcal disease outcomes of the trial.
Randomization was stratified by reservation and estimated population of children
under the age of 2, with vaccine masked via a system of six coded letters. These
vaccine codes corresponded to subunits of the randomization units, so that field
personnel were unaware of the randomization unit boundaries. There were 4164
infants enrolled in PnCRM7 communities, and 3926 in MnCC communities between
April 1997 and December 1999. At the midpoint of the trial, December 1998, there
were about 4,800 and 5,000 total children under the age of 2 years residing in
PnCRM7 and MnCC communities, respectively.

All infants less than 2 years of age on two American Indian reservations were
eligible to enroll in the study, with doses given at about 2, 4, and 6 months of age,
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followed by a booster dose at 12 months; catch-up schedules were used for older
infants and children up to 24 months of age. Details of the design may be found
in Moulton et al. (2001). The primary invasive disease analyses, given in O’Brien
et al. (2003), measured the total effect of the vaccine by comparing incidence
rates between enrollees in vaccine and control communities. It was anticipated
that immunization would reduce the amount of carriage of the pneumococcus in
the PnCRM7 vaccine communities, resulting in reduced secondary transmission of
disease.

Here, we concern ourselves with isolating the PnCRM7 vaccine’s indirect
effects through analysis of the rates of invasive pneumococcal disease among those
who were not enrolled in the trial, i.e., those who never received any study vaccine
during the trial. In particular, a rate comparison that can establish a direct estimate
of indirect effects is incidence rate in vaccine (PnCRM7) units among non-enrolled
children, versus the incidence rate in control (MnCC) units among non-enrolled
children. Similarly, other rate estimates that could be used to estimate the indirect
effects could include incidence rate measures among adults or other age groups in
each of the two types of communities.

The above rate comparison can be refined by making a dose-response analysis
in which the level of indirect effect is modified by the degree of immunization
coverage at the community level, an approach used previously in a synthetic case-
cohort design (Moulton et al., 2000). Thus, for example, a non-enrolled infant living
in a community allocated to PnCRM7 where 50% of infants have received at least
one vaccine dose would be expected to be at lower risk than a non-enrolled infant
in a community with 25% PnCRM7 coverage. This would also hold for vaccinated
infants, although their indirect benefit would be much smaller than their direct
benefit. It should be noted, however, that comparing effects at different levels of
coverage can be complicated by the fact that children who enroll in a study, or enroll
early, may differ in exposure or suseceptibility to the non- or late-enrolled. As the
proportion covered changes during a study, so do the relative characteristics of the
enrolled and non-enrolled.

METHODS

Sources of Data

Detailed information on study vaccine administration, including dates of
vaccination, among all the infants and children enrolled in the trial was collected
during the course of the study. We also were able to obtain overall denominators
for each of the 38 geographically defined randomization units from Indian Health
Service (IHS) User Population data and birth logs. With these two data sources (i.e.,
study data and general demographic data) we were able to interpolate to estimate
the size of the non-enrolled populations at any day in between April 1997 and
October 2000, the period of the trial up to the point of unmasking. The number
of non-enrolled children was obtained as the estimated total population minus the
enrolled population on any given day in any given randomization unit.

The numerator data, cases of invasive pneumococcal disease in the whole
population (i.e., enrolled and non-enrolled children) due to any of the seven
serotypes contained in the PnCRM7 vaccine, were those gathered during the course
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of the trial up to the day of study unblinding. A standard protocol was used
for intensive population and laboratory-based surveillance for all cases of invasive
pneumococcal disease, defined as isolation of pneumococcus from a normally sterile
body sites in tribal members of all ages. This surveillance was conducted at all
IHS facilities, as well as at surrounding and referral hospitals where tribal members
might seek care.

Statistical Methods

The underlying model is a non-homogeneous Poisson process in time and
space. Let �it be the rate of invasive disease among non-enrolled children under
2 years of age in randomization unit i on day t. A simple model for �it may be
written as:

�it = nit exp��t + �zi� (1)

where nit is the person-days of exposure in the ith unit on the tth day, �t represents
the effect of the tth day (it captures any day-specific secular trends, such as weekend
or seasonal effects), and � is the log rate ratio comparing those in the PnCRM7
units �zi = 1� to those in the MnCC units �zi = 0�. If living in a PnCRM7 unit
confers protection to non-enrolled children in that unit, i.e., those children receive
protective indirect effects of the vaccine, � will be negative, corresponding to a rate
reduction. We fit a somewhat more complicated model that permits comparison
across treatment arms of similarly-covered randomization units, and allows us to
see at what vaccine coverage level the indirect effects (if any) begin to take effect.
We construct dummy variables representing 0–24%, 25–49%, and ≥50% enrollment
(defined as having received at least one vaccine dose) of the under-2 population on
a given day in a given randomization unit, and cross them with the dummy variable
for treatment arm, and reparameterize to get five dummy variables representing six
conditions. Specifically, the model is:

�it = nit exp
(
�t + �1Mnc25−49

it + �2Mnc50+it + �3Pnc
0−24
it + �4Pnc

25−49
it + �5Pnc

50+
it

)
(2)

where, for example, Mnc25−49
it is unity for the ith unit on the tth day if it is a unit

randomized to MnCC vaccine, and if 25–49% of the children under age 2 on that
day have received at least one immunization; else, it is zero. Of particular interest
are the comparisons across treatment arms within coverage levels. Thus, if �3, the
log rate ratio comparing PnCRM7 units with low (0–24%) coverage to MnCC units
with low coverage, is negative, it would indicate indirect effects at low coverage
levels. Likewise, the differences �4 − �1 and �5 − �2 are also of interest, with negative
differences indicating the presence of indirect effects at the corresponding levels of
vaccine coverage. Specifically, exp��5 − �2) represents the rate ratio comparing the
incidence in PnCRM7 units with over 50% coverage to incidence in MnCC units
with over 50% coverage. Of course, we can control for coverage level by fitting a
model with one term for treatment arm and one for a continuous coverage variable;
or add a third for their interaction which, if negative, indicates indirect effects
increase with vaccine coverage.
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The analytic strategy is to eliminate the nuisance parameters �t from
consideration through conditioning on each day of the study. Each day delineates
a risk set, similar to a stratum in a case-control study, or the risk set in a Cox
regression model. The characteristics of those randomization units that experienced
a case on that day, defined as the date of culture, are compared to those who did
not have any cases on that day. This produces a probability that the cases’ units’
characteristics are associated with the cases’ units and the characteristics of the units
without cases are associated with those units. This is done for each day, and then the
probabilities are multiplied together to achieve the conditional likelihood function:

t=T∏
t=1

[
nit exp�xit��

/ ∑
j∈R�t�

njt exp�xjt��

]�t

(3)

where T is the number of days in the study, �t is one if there is a case on the tth
day and zero otherwise, R�t� is the set of indices of those units “at risk” on day t,
and xjt is the row vector of dummy variables for the jth unit on day t, with j = i
representing the unit with a case on that day. This conditional likelihood function
is maximized to produce estimates of �. However, there may be correlation across
the individual risk sets, engendered by the fact that the cases are coming from the
same randomization units over time. To account for the correlation, we use two
approaches. In both, seasonality and secular trends of invasive disease incidence are
perfectly accounted for through elimination of each day’s rate effect �t.

In the first approach, we perform a complete-observation bootstrap at the
randomization unit level, resampling the entire histories of each unit and then
performing the estimation 2,000 times.

Bootstrap standard errors and percentile intervals are used for statistical
inference. Computations are carried out in the Stata version 8 routine for
conditional logistic regression, using an offset term of ln�nit�, and wrapping a
bootstrap around it.

The second approach uses a robust variance estimator to account for the
correlation, employing a modified version of a SAS macro (Ishikawa and Barlow,
1998) that employs the SAS PHREG procedure. The data are still stratified by
day, with the robust variance calculated by squaring each randomization unit’s
contribution to the score vector and sandwiching it between inverted Fisher
information matrices (Royall, 1986). This is accomplished through taking advantage
of deletion diagnostics already programmed in SAS PROC PHREG.

Study immunizations did not begin simultaneously throughout the
reservations. To ensure that we only used data collected under study conditions, we
began each randomization unit’s entry into the analysis on the day the first study
child in that unit was immunized. Thus a unit’s numerator and denominator data
were not included in any risk sets until its day of first enrolled (immunized) child.

RESULTS

Figure 1 displays, by randomized study arm and by calendar time, the medians
of each trial arm’s units’ proportions of children under 2 years of age who had
received at least one dose of study vaccine. Throughout the study time frame,
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Figure 1 Medians over time of the proportions in randomization units of children under 2 years of
age immunized with at least one PnCRM7 (solid line) or MnCC (dashed line) vaccine.

there were slightly higher proportions immunized in the PnCRM7 communities
than in the MnCC communities. As of July 1, 1999, near the peak enrollment,
the proportions enrolled in PnCRM7 units ranged from 0.06 to 0.71, with a mean
of 0.50; in MnCC units, the range was 0.26 to 0.62, with mean 0.46. Enrollment
stopped toward the end of the study period, leading to declining proportions.

There were 21 cases of invasive pneumococcal disease due to study vaccine
serotypes among nonstudy children living in MnCC randomization units, and 27
cases among those in PnCRM7 units. The distribution of the numbers of cases in
units is given in Table 1. Zero cases were observed in 18 of the units, and 2 units
had six cases each.

In Table 2, the cases are broken down by the percentage of those under 2
years of age who had received at least one study dose, with rates based on the
estimated child-years of exposure in each immunization coverage category. The
overall, unadjusted estimate of indirect effects is given by the rate ratio 1.41 (95%
CI: 0.77, 2.62), indicating higher incidence in the PnCRM7 communities than in the
MnCC communities. In the lowest coverage category (0–24%), the incidence rate

Table 1 Numbers of randomization units in each study arm by number of cases of vaccine serotype
invasive pneumococcal disease among non-enrolled children. A total of 48 cases observed in 38 (19 in
each arm) randomization units

Number of randomization units with given number of cases
Vaccine
arm 0 cases 1 cases 2 cases 3 cases 4 cases 5 cases 6 cases Total

MnCC 8 6 3 1 0 0 1 19 units
PnCRM7 10 1 3 2 2 0 1 19 units
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Table 2 Cases and rates of vaccine serotype invasive pneumococcal disease among non-enrolled
children by study arm and immunization coverage level

Rate/
100,000 Rate ratio (and exact 95% confidence

Study Arm/ No. Child- child interval) of PnCRM7 to MnCC for
% coverage cases years years each coverage category

MnCC Overall 21 17922 117
MnCC 0–24% 4 11050 36
MnCC 25–49% 13 5810 224
MnCC 50+% 4 1062 377
PnCRM7 Overall 27 16374 165 1.41 (0.77, 2.62)
PnCRM7 0–24% 11 10218 108 2.97 (0.88, 12.81)
PnCRM7 25–49% 8 4163 192 0.86 (0.31, 2.24)
PnCRM7 50+% 8 1992 402 1.07 (0.29, 4.84)

was higher in PnCRM7 communities than in MnCC communities, while the rates
were similar across study arms in the higher coverage levels.

Table 3 has the results of fitting the conditional logistic regression model
with linear predictor as specified in Eq. (2). The reference status, 0–24% coverage
in MnCC units, had the lowest associated rate of invasive pneumococcal disease.
The highest rates occurred in units at higher levels of vaccine coverage, with rate
ratios of about 7 (exp[1.93], exp[1.96]) for the MnCC and PnCRM7 units with
over 50% immunized as compared to the reference category. When units had less
than 25% coverage, PnCRM7 units had higher rates than MnCC units �rate ratio =
exp�1�09� = 3�0�. Comparing PnCRM7 to MnCC units within the coverage levels
25–49% or >50%, however, there was very little difference, indicating no observed
indirect effects. As an example of how to make a direct comparison, exp��̂5 −
�̂2� = exp�1�96− 1�93� = 1�03. Using the naïve covariance matrix for the parameter
estimates, s.e.��̂5 − �̂2� =

√
0�694+ 0�557− 2�0�436� = 0�616, yielding a 95% Wald

Table 3 Analysis results from fitting conditional logistic models with five dummy variables to represent
six vaccine arm/percentage vaccine coverage combinations. Conditional maximum likelihood estimates
(CMLE), standard errors and corresponding 95% confidence intervals, and 95% bootstrap percentile
intervals

Dummy variable Bootstrap Bootstrap
(arm/% Naive Bootstrap Robust Naive SE-based percentile
coverage) CMLE SE SE SE CI CI Robust CI interval

MnCC 0–24% 0∗

MnCC 25–49% 1.18 0.64 0.62 0.51 −0�08, 2.43 −0�04, 2.39 0.18, 2.17 0.12, 2.74
MnCC 50+% 1.93 0.83 0.81 0.66 0.30, 3.56 0.35, 3.52 0.64, 3.23 0.46, 4.25
PnCRM7 0–24% 1.09 0.59 0.60 0.49 −0�06, 2.24 −0�08, 2.26 0.14, 2.04 −0�07, 2.58
PnCRM7 25–49% 0.98 0.66 0.75 0.62 −0�32, 2.28 −0�49, 2.45 −0�24, 2.19 −1�05, 2.59
PnCRM7 50+% 1.96 0.75 0.85 0.71 0.50, 3.43 0.29, 3.64 0.56, 3.37 0.68, 4.37

∗Reference category: Units that received MnCC vaccine which on a given day had less than 25% of
children enrolled in the study. The CMLEs are the log rate ratios comparing incidence in non-enrolled
children in the given category to the reference category.
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interval for the ratio 1.03 of (0.31, 3.45). These results, which are completely
adjusted for any secular or seasonal trends, are consistent with those of the crude
rates given in Table 2: 1.07 (0.29, 4.84).

There was little difference between the three estimates of standard error: the
naïve estimate, that does not adjust for within-unit correlation, and the robust and
bootstrap estimates, that do. Of all the confidence intervals, those produced via the
robust standard errors tended to be the shortest.

DISCUSSION

Although with the current analyses we have not found any evidence of indirect
effects of PnCRM7, the confidence intervals surrounding the estimates were quite
wide, as they were based on a total of only 48 events. Thus, we were not able to
rule out the possibility that important indirect effects for children under 2 years
of age existed at the levels of immunization coverage seen during the study, which
peaked at 50–60%. It may be, however, that higher coverage is required to result
in measurable indirect effects—relatively high levels of nasopharyngeal carriage of
the pneumococcus in all age groups may mean that modest coverage levels, even
with an effective vaccine, do not significantly reduce an infant’s chances of having
contact with a carrier.

The highest rate ratios were obtained for both MnCC and PnCRM7 units
that had the highest proportions immunized, but this may reflect access-to-care
issues: perhaps those areas that were closest to the immunization centers (generally
in towns) had both higher immunization rates and greatest chance of detection of
episodes. This is why it is important to compare rates within similar immunization
coverage strata, to avoid the possibility of confounding by access-related variables
such as distance and rural/urban mix. Alternatively, data could be collected on
variables thought to be related to access and included in the regression analyses.
It should be noted that in community randomized trials that are not masked, or
only partially masked, during the study period immunization coverage rates could
change differentially by trial arm as the study population perceives added advantage
(or disadvantage) to receiving the study vaccine. In such situations, interpretation
of coverage-related variables will be problematic.

Controlling for immunization levels and study arms, we did not see evidence
of overdispersion; indeed, surprisingly, the naïve standard errors were larger than
the robust standard errors. This may be due to the relatively small number of
cases, and the fact that so many randomization units had only zero or one case.
For this example data set, the added complexity of adjusting for correlation turned
out to have little effect on the results. We would not have known this, however,
if we had not gone through the adjustment exercise. As a demonstration of how
additional within-unit correlation could be expressed, we added four additional
(fake) cases to one of the MnCC units that already had a few cases and had low
(<25%) immunization coverage. The ratios of the robust standard errors to the
naïve standard errors, which had been less than unity for the original data, became
1.4, 1.2, and 1.2 for the PnCRM7 terms (0–24%, 35–49%, and 50%+, respectively),
and closer to unity for the two MnCC terms.

A full treatment of these data is beyond the scope of this paper, whose focus
is on methodology for indirect effects estimation. For example, large decreases
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have also been observed among Alaskan Native adults in communities with good
pneumococcal vaccine coverage of infants and young children (Hennessy et al.,
2005). It could be useful to use our approach to conduct further analyses to model
the incidence of invasive pneumococcal disease in older children and adults as a
function of vaccine coverage in infants and young children. Also, although receipt
of at least one vaccine dose is highly correlated with receipt of further doses, other
analyses would look at incidence rate reduction as a function of the proportion of
the population who had received a full primary series (an age-specific definition).
If pneumococcal carriage in individuals is not much reduced until two, three, or
booster doses are given, then such analyses may be more powerful.

Our proposed conditional logistic regression approach, with either bootstrap
or robust inference methods to account for correlation, is a straightforward way
to approach the estimation of indirect effects in a group-randomized study setting.
It may also be employed in phased-implementation one-way crossover studies, also
called “stepped wedge” studies, when secular trends may be an issue. Such studies
may be more acceptable to a population, especially when a licensed vaccine of
known efficacy is being used as a probe to estimate the degree of disease burden
in an area. For example, the order of introduction of a vaccine in 24 districts in
a country may be randomized, with the supply of vaccine begun in the clinics of
another district every month. After 2 years, the whole country has been covered. In
any given month, the rates of the disease of interest in the districts that have not
yet received vaccine are compared to the rates in those that have received vaccine.
The analysis can proceed in the same manner as the ones proposed in this article for
the non-enrolled groups, except that the main covariate of interest will be whether
a person’s district is in a vaccine or non-vaccine status on a given day or month.
That would give an intent-to-treat effectiveness estimate; alternatively, the cases’
individual status can be used, giving an asvaccinated estimate. Either way, within-
district correlation would still need to be handled, as per the approaches we have
examined.
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